Register Transfer Language And Micro Operations:

Register Transfer language:

- Digital systems are composed of modules that are constructed from digital components, such as registers, decoders, arithmetic elements, and control logic
- The modules are interconnected with common data and control paths to form a digital computer system
- The operations executed on data stored in registers are called microoperations
- A microoperation is an elementary operation performed on the information stored in one or more registers
- Examples are shift, count, clear, and load
- Some of the digital components from before are registers that implement microoperations
- The internal hardware organization of a digital computer is best defined by specifying
- The set of registers it contains and their functions
- The sequence of microoperations performed on the binary information stored
- The control that initiates the sequence of microoperations
- Use symbols, rather than words, to specify the sequence of microoperations
- The symbolic notation used is called a register transfer language
- A programming language is a procedure for writing symbols to specify a given computational process
- Define symbols for various types of microoperations and describe associated hardware that can implement the microoperations

Register Transfer

- Designate computer registers by capital letters to denote its function
- The register that holds an address for the memory unit is called MAR
- The program counter register is called PC
- IR is the instruction register and R1 is a processor register
- The individual flip-flops in an n-bit register are numbered in sequence from 0 to n-1
- Refer to Figure 4.1 for the different representations of a register

Figure 4-1 Block diagram of register.
\qquad
(a) Register R

(c) Numbering of bits

(b) Showing individual bits

(d) Divided into two parts

- Designate information transfer from one register to
another by $\mathrm{R} 2 \leftarrow \mathrm{R} 1$
- This statement implies that the hardware is available
- The outputs of the source must have a path to the inputs of the destination
- The destination register has a parallel load capability
- If the transfer is to occur only under a predetermined control condition, designate it by

$$
\text { If }(\mathrm{P}=1) \text { then }(\mathrm{R} 2 \leftarrow \mathrm{R} 1)
$$

or,

$$
\mathrm{P}: \mathrm{R} 2 \leftarrow \mathrm{R} 1,
$$

Computer Organization

where P is a control function that can be either 0 or 1

- Every statement written in register transfer notation implies the presence of the required hardware construction

Figure 4-2 Transfer from $R 1$ to $R 2$ when $P=1$.

(a) Block diagram

(b) Timing diagram

- It is assumed that all transfers occur during a clock edge transition
- All microoperations written on a single line are to be executed at the same time $\mathrm{T}: \mathrm{R} 2 \leftarrow \mathrm{R} 1, \mathrm{R} 1 \leftarrow \mathrm{R} 2$

TABLE 4-1 Basic Symbols for Register Transfers

Symbol	Description	Examples
Letters (and numerals)	Denotes a register	$M A R, R 2$
Parentheses (\quad)	Denotes a part of a register	$R 2(0-7), R 2(L)$
Arrow \leftarrow	Denotes transfer of information	$R 2 \leftarrow R 1$
Comma,	Separates two microoperations	$R 2 \leftarrow R 1, R 1 \leftarrow R 2$

Bus and Memory Transfers

- Rather than connecting wires between all registers, a common bus is used
- A bus structure consists of a set of common lines, one for each bit of a register
- Control signals determine which register is selected by the bus duringeach transfer
- Multiplexers can be used to construct a common bus
- Multiplexers select the source register whose binary information is then placed on the bus
- The select lines are connected to the selection inputs of the multiplexers and choose the bits of one register

Figure 4-3 Bus system for four registers.

- In general, a bys system will multiplex k registers of n bits each to produce an n - line common bus
- This requires n multiplexers - one for each bit
- The size of each multiplexer must be $\mathrm{k} \times 1$
- The number of select lines required is $\log \mathrm{k}$
- To transfer information from the bus to a register, the bus lines are connected to the inputs of all destination registers and the corresponding load control line must be activated
- Rather than listing each step as

$$
\text { BUS } \leftarrow \mathrm{C}, \mathrm{R} 1 \leftarrow \mathrm{BUS},
$$

use $\quad \mathrm{R} 1 \leftarrow \mathrm{C}$, since the bus is implied

- Instead of using multiplexers, three-state gates can be used to
construct the bus system
- A three-state gate is a digital circuit that exhibits three states
- Two of the states are signals equivalent to logic 1 and 0
- The third state is a high-impedance state - this behaves like an open circuit, which means the output is disconnected and does not have a logic significance

Figure 4-4 Graphic symbols for three-state buffer.

- The three-state buffer gate has a normal input and a control input which determines the output state
- With control 1, the output equals the normal input
- With control 0 , the gate goes to a high-impedance state
- This enables a large number of three-state gate outputs to be connected with wires to form a common bus line without endangering loading effects

Figure 4-5 Bus line with three state-buffers.

- Decoders are used to ensure that no more than one control input is active at any given time
- This circuit can replace the multiplexer in Figure 4.3
- To construct a common bus for four registers of n bits each using three-state buffers, we need n circuits with four buffers in each
- Only one decoder is necessary to select between the four registers
- Designate a memory word by the letter M
- It is necessary to specify the address of M when writing memory transfer operations

Computer Organization

- Designate the address register by AR and the data register by DR
- The read operation can be stated as: Read: DR $\leftarrow \mathrm{M}[\mathrm{AR}]$
- The write operation can be stated as:
Write: $\mathrm{M}[\mathrm{AR}] \leftarrow \mathrm{Rl}$

Arithmetic Microoperations

- There are four categories of the most common microoperations:
- Register transfer: transfer binary information from one register to another
- Arithmetic: perform arithmetic operations on numeric data stored in registers
- Logic: perform bit manipulation operations on non-numeric data stored in registers
- Shift: perform shift operations on data stored in registers
- The basic arithmetic microoperations are addition, subtraction, increment, decrement, and shift
- Example of addition: $\mathrm{R} 3 \leftarrow \mathrm{R} 1+\mathrm{R} 2$
- Subtraction is most often implemented through complementation and addition
- Example of subtraction: $\mathrm{R} 3 \leftarrow \mathrm{R} 1+\overline{\mathrm{R} 2}+1$ (strikethrough denotes bar on top - $1^{\text {"c }} \mathrm{s}$ complement of R2)
- Adding 1 to the $1^{\text {"c }} \mathrm{s}$ complement produces the 2 "s complement
- Adding the contents of R1 to the 2 " s complement of R2 is equivalent to subtracting

Figure 4-3 Bus system for four registers.

- Multiply and divide are not included as microoperations
- A microoperation is one that can be executed by one clock pulse
- Multiply (divide) is implemented by a sequence of add and shift microoperations (subtract and shift)
- To implement the add microoperation with hardware, we need the registers that hold the data and the digital component that performs the addition
- A full-adder adds two bits and a previous carry
- A binary adder is a digital circuit that generates the arithmetic sum of two binary numbers of any length
- A binary added is constructed with full-adder circuits connected in cascade
- An n -bit binary adder requires n full-adders

Figure 4-6 4-bit binary adder.

- The subtraction A-B can be carried out by the following steps
- Take the 1 "s complement of B (invert each bit)
- Get the 2 "s complement by adding 1
- Add the result to A
- The addition and subtraction operations can be combined into one common circuit by including an XOR gate with each full-adder

Figure 4-7 4-bit adder-subtractor.

- The increment microoperation adds one to a number in a register
- This can be implemented by using a binary counter - every time the count enable is active, the count is incremented by one
- If the increment is to be performed independent of a particular register, then use half-adders connected in cascade
- An n-bit binary incrementer requires n half-adders

Figure 4-8 4-bit binary incrementer.

- Each of the arithmetic microoperations can be implemented in one composite arithmetic circuit
- The basic component is the parallel adder
- Multiplexers are used to choose between the different operations
- The output of the binary adder is calculated from the following sum: $\mathrm{D}=\mathrm{A}+\mathrm{Y}+\mathrm{C}_{\mathrm{in}}$

Figure 4-9 4-bit arithmetic circuit.
TABLE 4-4 Arithmetic Circuit Function Table

Select			Input Y	Output$D=A+Y+C_{\text {in }}$	Microoperation
S_{1}	S_{0}	$C_{\text {in }}$			
0	0	0	B	$D=A+B$	Add
0	0	1	B	$D=A+B+1$	Add with carry
0	1	0	\bar{B}	$D=A+\bar{B}$	Subtract with borrow
0	1	1	\bar{B}	$D=A+\bar{B}+1$	Subtract
1	0	0	0	$D=A$	Transfer A
1	0	1	0	$D=A+1$	Increment A
1	1	0	1	$D=A-1$	Decrement A
1	1	1	1	$D=A$	Transfer A

Logic Microoperations

- Logic operations specify binary operations for strings of bits stored in registers and treat each bit separately
- Example: the XOR of R1 and R2 is symbolized by

P: R1 $\leftarrow \mathrm{R} 1 \oplus \mathrm{R} 2$

- Example: R1 $=1010$ and R2 $=1100$

1010 Content of R1
1100 Content of R2

$$
0110 \text { Content of R1 after } \mathrm{P}=1
$$

- Symbols used for logical microoperations:
- OR:V
- AND: ${ }^{\wedge}$
- XOR: \oplus
- The + sign has two different meanings: logical OR and summation
- When + is in a microoperation, then summation
- When + is in a control function, then OR
- Example:

$$
\mathrm{P}+\mathrm{Q}: \mathrm{R} 1 \leftarrow \mathrm{R} 2+\mathrm{R} 3, \mathrm{R} 4 \leftarrow \mathrm{R} 5 \mathbf{V} \mathrm{R} 6
$$

- There are 16 different logic operations that can be performed with two binary variables

TABLE 4-5 Truth Tables for 16 Functions of Two Variables

\boldsymbol{x}	\boldsymbol{y}	F_{0}	F_{1}	F_{2}	F_{3}	F_{4}	F_{5}	F_{6}	F_{7}	F_{8}	F_{9}	F_{10}	F_{11}	F_{12}	F_{13}	F_{14}	F_{15}
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

TABLE 4-6 Sixteen Logic Microoperations

Boolean function	Microoperation	Name
$F_{0}=0$	$F \leftarrow 0$	
$F_{1}=x y$	$F \leftarrow A \wedge B$	Clear
$F_{2}=x y^{\prime}$	$F \leftarrow A \wedge \bar{B}$	
$F_{3}=x$	$F \leftarrow A$	
$F_{4}=x x^{\prime} y$	$F \leftarrow \bar{A} \wedge B$	
$F_{5}=y$	$F \leftarrow B$	
$F_{6}=x \oplus y$	$F \leftarrow A \oplus B$	Transfer A
$F_{7}=x+y$	$F \leftarrow A \vee B$	Exclusive-OR
$F_{8}=(x+y)^{\prime}$	$F \leftarrow \overline{A \vee B}$	OR
$F_{9}=(x \oplus y)^{\prime}$	$F \leftarrow \overline{A \oplus B}$	NOR
$F_{10}=y^{\prime}$	$F \leftarrow \bar{B}$	Exclusive-NOR
$F_{11}=x+y^{\prime}$	$F \leftarrow A \vee \bar{B}$	
$F_{12}=x^{\prime}$	$F \leftarrow \bar{A}$	
$F_{13}=x^{\prime}+y$	$F \leftarrow \bar{A} \vee B$	
$F_{14}=(x y)^{\prime}$	$F \leftarrow \overline{A \wedge B}$	Complement B
$F_{15}=1$		NAND

- The hardware implementation of logic microoperations requires that logic gates be inserted for each bit or pair of bits in the registers
- All 16 microoperations can be derived from using four logic gates

Figure 4-10 One stage of logic circuit.

(b) Function table
(a) Logic diagram

- Logic microoperations can be used to change bit values, delete a group of bits, or insert new bit values into a register
- The selective-set operation sets to 1 the bits in A where there are corresponding 1 "s in B

1010 A before
1100 B
1110 A after
$\mathrm{A} \leftarrow \mathrm{A} \square \mathrm{B}$

- The selective-complement operation complements bits in A where there are corresponding 1 "s in B

1010	A before
1100	B
0110	A after

$\mathrm{A} \leftarrow \mathrm{A} \oplus \mathrm{B}$

- The selective-clear operation clears to 0 the bits in A only where there are corresponding 1 "s in B

1010 A before
1100 B
0010 A after
$\mathrm{A} \leftarrow \mathrm{A} \square \mathrm{B}$

- The mask operation is similar to the selective-clear operation, except that the bits of A are cleared only where there are corresponding 0 "s in B

1010	A before
$\underline{1100}$	B
1000	A
$\mathrm{A} \leftarrow$	
$\mathrm{A} \square \mathrm{B}$	

- The insert operation inserts a new value into a group of bits
- This is done by first masking the bits to be replaced and then Oring them with the bits to be inserted

01101010	A before
$\underline{00001111}$	B (mask)
00001010	A after masking
00001010	A before
$\underline{10010000}$	B (insert)
$1001 \quad 1010$	A after insertion

- The clear operation compares the bits in A and B and produces an all 0 "s result if the two number are equal

1010 A
1010 B
$0000 \quad \mathrm{~A} \leftarrow \mathrm{~A} \oplus \mathrm{~B}$

Shift Microoperations

- Shift microoperations are used for serial transfer of data
- They are also used in conjunction with arithmetic, logic, and other data- processing operations
- There are three types of shifts: logical, circular, and arithmetic
- A logical shift is one that transfers 0 through the serial input
- The symbols shl and shr are for logical shift-left and shift-right by one position R1 $\leftarrow \operatorname{shlR} 1$
- The circular shift (aka rotate) circulates the bits of the register around the two ends without loss of information
- The symbols cil and cir are for circular shift left and right

TABLE 4-7 Shift Microoperations

Symbolic designation	Description
$R \leftarrow \operatorname{shl} R$	Shift-left register R
$R \leftarrow \operatorname{shr} R$	Shift-right register R
$R \leftarrow \operatorname{cil} R$	Circular shift-left register R
$R \leftarrow \operatorname{cir} R$	Circular shift-right register R
$R \leftarrow \operatorname{ashl} R$	Arithmetic shift-left R
$R \leftarrow \operatorname{ashr} R$	Arithmetic shift-right R

- The arithmetic shift shifts a signed binary number to the left or right
- To the left is multiplying by 2 , to the right is dividing by 2
- Arithmetic shifts must leave the sign bit unchanged
- A sign reversal occurs if the bit in $\mathrm{R}_{\mathrm{n}-1}$ changes in value after the shift
- This happens if the multiplication causes an overflow
- An overflow flip-flop V_{s} can be used to detect

$$
\text { theoverflow } \mathrm{V}_{\mathrm{s}}=\mathrm{R}_{\mathrm{n}-1} \oplus \mathrm{R}_{\mathrm{n}-2}
$$

Figure 4-11 Arithmetic shift right.

- A bi-directional shift unit with parallel load could be used to implement this
- Two clock pulses are necessary with this configuration: one to load the value and another to shift
- In a processor unit with many registers it is more efficient to implement the shift operation with a combinational circuit
- The content of a register to be shifted is first placed onto a common bus and the output is connected to the combinational shifter, the shifted number is then loaded back into the register
- This can be constructed with multiplexers

Function table

Select	Output			
S	H_{0}	H_{1}	H_{2}	H_{3}
0	I_{R}	A_{0}	A_{1}	A_{2}
1	A_{1}	A_{2}	A_{3}	I_{L}

Figure 4-12 4-bit combinational circuit shifter.

Arithmetic Logic Shift Unit

- The arithmetic logic unit (ALU) is a common operational unit connected to a number of storage registers
- To perform a microoperation, the contents of specified registers are placed in the inputs of the ALU
- The ALU performs an operation and the result is then transferred to a destination register
- The ALU is a combinational circuit so that the entire register transfer operation from the source registers through the ALU and into the destination register can be performed during one clock pulse period

Figure 4-13 One stage of arithmetic logic shift unit.

TABLE 4-8 Function Table for Arithmetic Logic Shift Unit

Operation select						Function
S_{3}	S_{2}	S_{1}	S_{0}	$C_{\text {in }}$	Operation	
0	0	0	0	0	$F=A$	Transfer A
0	0	0	0	1	$F=A+1$	Increment A
0	0	0	1	0	$F=A+B$	Addition
0	0	0	1	1	$F=A+B+1$	Add with carry
0	0	1	0	0	$F=A+\bar{B}$	Subtract with borrow
0	0	1	0	1	$F=A+\bar{B}+1$	Subtraction
0	0	1	1	0	$F=A-1$	Decrement A
0	0	1	1	1	$F=A$	Transfer A
0	1	0	0	\times	$F=A \wedge B$	AND
0	1	0	1	\times	$F=A \vee B$	OR
0	1	1	0	\times	$F=A \oplus B$	XOR
0	1	1	1	\times	$F=\bar{A}$	Complement A
1	0	\times	\times	\times	$F=\operatorname{shr} A$	Shift right A into F
1	1	\times	\times	\times	$F=\operatorname{shl} A$	Shift left A into F

